1	Приложение	T/°	$\Pi \cap \Omega$	COO	
J	приложение	K	OOH	COO	

<u>No</u> _____

Рабочая программа

Курса внеурочной деятельности

«Методы решения физических задач»

(ΦΓΟС СΟΟ)

10 класс

MAOY HMO «COⅢ №12

Программа составлена на основе Федерального государственного образовательного стандарта среднего общего образования (утверждён приказом Министерства образования и науки РФ от17 мая 2012 № 413(с изменениями и дополнениями), Основной образовательной программы среднего общего образования МАОУ НМО «СОШ № 12» и является её частью, на основе авторской рабочей программы к линии УМК Г.Я. Мякишев, Б.Б.Буховцев, Н.Н.Сотцкий, с учётом используемого учебника: Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотцкий под редакцией Н.А. Парфентьевой «Физика 10 класс (базовый и углублённый уровни)».

Курс внеурочной деятельности «Методы решения физических задач» рассчитан на учащихся 10 класса ОО. Курс включён в план внеурочной деятельности (основание: результаты анкетирования обучающихся и их родителей (законных представителей)). Это курс для посещения по выбору обучающихся.

В соответствии с учебным планом МАОУ НМО «СОШ №12» физика в 10 классе изучается на базовом уровне (2 часа в неделю) и углубление идет за счет курса внеурочной деятельности. Настоящий курс рассчитан на 34 часа в год в 10 классе.

Содержание программы соответствует Планируемым предметным результаты освоения Основной образовательной программы среднего общего образования по предмету Физика.

		Содержание учебного курса							
		10 класс			11 класс				
Раздел	Всего часов	Правила и приёмы решения физических задач	Механика	Молекулярная физика и термодинамика	Электродинамика				
Правила и приёмы решения	1	1							
физических задач									
Механика	11		11						
Молекулярная физика и термодинамика	11			11					
Электродинамика	7				7				
Основы специальной									
теории относительности.									
Квантовая физика. Физика									
атома и атомного ядра									
Резервное время	4	4							

Данный курс «Методы решения физических задач» поддерживает изучение основного курса физики и способствует лучшему усвоению его базового курса. Материал данного курса уделяет большее внимание тем вопросам программы, которые вызывают особый интерес школьников, имеют наибольшую ценность в решении задач профориентации учащихся. Познавательный материал курса будет способствовать не только выработке умений и закреплению навыков, но и формированию устойчивого интереса учащихся к процессу и содержанию деятельности, а также познавательной и социальной активности. Наряду с основной задачей расширения и углубления теоретического и практического изучения школьного курса физики данный курс позволяет ближе подвести учащихся к современному уровню развития науки, что обеспечит больший интерес к предмету. А уделение внимания практическим приложениям физики, связи физики с жизнью призвано ориентировать значительную часть учащихся на выбор профессии инженера, техника, рабочего.

В изучении курса физики решение задач имеет исключительно большое значение и им должно отводиться значительная часть курса. Решение и анализ задач позволяет понять и запомнить основные законы и формулы физики, создаёт представление об их характерных особенностях и границах применения. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение.. А в условиях, когда усиливается роль самостоятельности и активности в обучении и развитии мышления (это касается подготовки к ЕГЭ), умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения.

Физическая задача — это ситуация, требующая от учащихся мыслительных и практических действий на основе законов и методов физики, направленных на овладение знаниями по физике и на развитие мышления. Хотя способы решения традиционных задач хорошо известны (логический (математический), экспериментальный), но организация деятельности учащихся по решению задач является одним из условий обеспечения глубоких и прочных знаний у учащихся. Сегодня знания учащихся по физике явно демонстрируют все большую дифференциацию выпускников по качеству подготовки.

Это означает точное следование стандарту предмета на базовом уровне: познакомить учащихся с предусмотренным спектром физических явлений, обеспечить общекультурную подготовку в этой области знаний. Но при этом невозможно изучить все законы, необходимые для объяснения физических явлений, а, следовательно, невозможно обеспечить формирование умения решать задачи по физике (что базовый уровень стандарта и не предусматривает). Поэтому курс по решению физических задач в первую очередь призван развивать содержание базового курса физики, у учащихся появляется реальная возможность при наличии данного курса подготовиться к сдаче ЕГЭ.

Цель данного курса углубить и систематизировать знания учащихся 10 класса по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Основная задача курса - подготовить учащихся к ЕГЭ с опорой на знания и умения учащихся, приобретенные при изучении физики в 7-9 классах, а также углублению знаний по темам при изучении курса физики в 10 классе.

Задачи курса:

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Программа курса внеурочной деятельности составлена с учетом Федерального государственного образовательного стандарта среднего общего образования и курса физики базовой школы. Вся программа делится на несколько разделов. В программе выделены основные разделы школьного курса физики, в начале изучения которых с

учащимися повторяются основные законы и формулы данного раздела. При подборе задач по каждому разделу можно использовать вычислительные, качественные, графические, экспериментальные задачи.

В начале изучения курса дается два урока, целью которых является знакомство учащихся с понятием «задача», их классификацией и основными способами решения. Большое значение дается алгоритму, который формирует мыслительные операции: анализ условия задачи, догадка, проект решения, выдвижение гипотезы (решение), вывод.

В 10 классе при решении задач особое внимание уделяется последовательности действий, анализу физического явления, проговариванию вслух решения, анализу полученного ответа. Если в начале раздела для иллюстрации используются задачи из механики, молекулярной физики, электродинамики, то в дальнейшем решаются задачи из разделов курса физики. При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену. При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной трудности.

В конце изучения основных тем («Кинематика и динамика», «Молекулярная физика», «Электродинамика») проводятся занятия в форме тренировочных работ, задания которых составлены на основе банка заданий ЕГЭ по физике.

В процессе реализации данной рабочей программы оценочная система не предусмотрена.

Основные требования к знаниям и умениям

Учащиеся должны знать:

- Понятия: Основные понятия таких разделов физики, как механика, молекулярная физика, термодинамика, электростатика, законы постоянного тока.
- Законы и принципы: Основные законы динамики, закон сохранения импульса и энергии, газовые законы, законы термодинамики, законы электростатики, законы постоянного тока.

Учащиеся должны уметь:

- Измерять и вычислять физические величины (импульс, работу, мощность, КПД механизмов...).
- Решать задачи на определение основных понятий курса физики 10 класса
- Изображать на чертеже при решении задач направление векторов силы, импульса тепа.
- описывать превращения видов энергии при различных физических явлениях.
- Работать с графиками зависимости между основными параметрами состояния газа.
- Проводить расчёты электрических цепей с применением закона Ома для участка и полной цепи и закономерностей последовательного и параллельного соединений проводников.

Содержание программы

10 КЛАСС

1. Правила и приемы решения физических задач (1 час)

Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.

2. Механика (11 час.)

Прямолинейное равномерное движение и его характеристики: перемещение, путь. Графическое представление движения РД. Графический и координатный способы решения задач на РД. Алгоритм решения задач на расчет средней скорости движения.

Ускорение. Равнопеременное движение: движение при разгоне и торможении. Перемещение при равноускоренном движении. Графическое представление РУД. Графический и координатный способы решения задач на РУД.

Решение задач по алгоритму на законы Ньютона с различными силами (силы упругости, трения, сопротивления). Координатный метод решения задач по динамике по алгоритму: наклонная плоскость, вес тела, задачи с блоками и на связанные тела.

Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.

Движение материальной точки по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость. Центростремительное ускорение. Космические скорости. Решение астрономических задач на движение планет и спутников.

Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи на определение характеристик равновесия физических систем и алгоритм их решения.

Импульс тела и импульс силы. Решение задач на второй закон Ньютона в импульсной форме. Замкнутые системы. Абсолютно упругое и неупругое столкновения. Алгоритм решение задач на сохранение импульса и реактивное движение.

Энергетический алгоритм решения задач на работу и мощность. Потенциальная и кинетическая энергия. Полная механическая энергия. Алгоритм решения задач на закон сохранения и превращение механической энергии несколькими способами. Решение задач на использование законов сохранения.

Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач динамическим способом на плавание тел.

3. Молекулярная физика и термодинамика (11 час.)

Решение задач на основные характеристики молекул на основе знаний по химии и физики. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Графическое решение задач на изопроцессы.

Алгоритм решения задач на определение характеристик влажности воздуха. Решение задач на определение характеристик твёрдого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Внутренняя энергия одноатомного газа. Работа и количество теплоты. Алгоритм решения задач на уравнение теплового баланса. Первый закон термодинамики. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

4. Электродинамика (7 час.)

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Алгоритм решения задач: динамический и энергетический. Решение задач на описание систем конденсаторов. Решение задач на применение законов постоянного тока (закон Ома для участка цепи, закон Ома для полной цепи, закон Джоуля-Ленца) для электрических цепей с последовательным, параллельным и смешанным соединением проводников.

Тематическое планирование 10 класс

No	Тема.	Содержание, основные понятия, идеи.
1.	Правила и приёмы решения физических задач.	Что такое физическая задача? Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов. Общие требования при решении физических задач. Этапы решения задачи. Анализ решения и оформление решения. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии.
2.	Решение задач по теме «Равномерное - прямолинейное движение. Относительность движения».	Работа с графиком координаты $(x=x(t))$, проекции перемещения, проекции скорости, ускорения. Определение физических величин в указанные моменты времени. Построение графиков по аналитическим уравнениям.
3.	Решение задач по теме «Равноускоренное движение»	Работа с графиком координаты $(x=x(t))$, проекции перемещения, проекции скорости, ускорения. Определение физических величин в указанные моменты времени. Построение графиков по аналитическим уравнениям.
4.	Решение задач по теме « Движение тела по вертикали».	Работа с уравнениями, описывающими движение по вертикали: $h = h_0 + v_0 t + g t^2 / 2$, $v = v_0 + g t$.
5.	Решение задач по теме «Движение тела, брошенного под углом к горизонту».	Работа с уравнениями, описывающими движение тела, начальная скорость которого, направлена под углом к горизонту: $X=v_0t\coslpha$ $Y=v_0t\sinlpha-gt^2/2$.
6.	Решение задач по теме «Применение законов Ньютона. (Тело движется по горизонтали)».	Качественные и графические задачи на относительность направления векторов скорости, ускорения, силы, а также ситуации, описывающие движение тел для случаев, когда силы, приложенные к телу, направлены вдоль одной прямой. Алгоритм решения задач по динамике. Равнодействующая сила.
7.	Решение задач по теме «Применение законов Ньютона. (Тело движется по наклонной плоскости)».	Задачи на движение тел под действием сил, направленных под углом друг к другу (по наклонной плоскости).
8.	Решение задач по теме «Применение законов Ньютона. (Тело движется по окружности)».	Задачи на движение тел под действием сил, направленных под углом к друг к другу.
9.	Решение задач по теме «Применение законов Ньютона. Движение связанных тел».	Задачи на движение связанных тел.
10.	Решение задач по теме «Закон сохранения импульса».	Анализ и решение задач На закон сохранения импульса для упругого и неупругого удара при различном начальном состоянии тел замкнутой системы.
11.	Решение задач по теме «Кинетическая и потенциальная энергия тела». Решение задач по теме	Анализ задач, которые требуют применения следующих формул: $A=FS*cos\acute{\alpha},\ N=Fv,$ $A=\Delta E_{\kappa},\ A=-\Delta E_{n},\ E_{\kappa}+E_{n}=const,\ \Delta E_{\kappa}=mv^{2}/2,\ E_{n}=mgh,$ $E_{n}=kx^{2}/2,\ a$ также знаний о законах кинематики и динамики Анализ комплексных задач с использованием закона

	«Закон сохранения	сохранения полной механической энергии и закона
	энергии».	сохранения импульса в механике.
13.	Решение задач по теме	Установление межпедметных связей с химией и повторение
	«Основные положения	понятий характеризующих молекулы. Способы расчёта
	MKT».	значений данных физических величин для конкретных
		веществ:
		$v=m/M$, $N=vN_A$, $M=M_r*10^{-3}(\kappa z/Mоль)$,
1.4	D	$m_0=M/N_A$
14.	Решение задач по теме «Основное уравнение	Анализ задач на применение различных форм основного уравнения МКТ идеального газа.
	«Основное уравнение МКТ».	уравнения МКТ идеального газа.
15.	Решение задач по теме	Решение задач с применением формул:
	«Уравнение состояния	pV=(m/M)RT,
	идеального газа».	$p_1V_1/T_1=p_2V_2/T_2$.
16.	Решение задач по теме	Решение задач с применением формул:
	«Уравнение состояния	pV=(m/M)RT,
	идеального газа».	$p_1V_1/T_1=p_2V_2/T_2$.
17.	Решение задач по теме	Количественные, качественные и графические задачи на
	«Газовые законы».	уравнения Бойля-Мариотта, Гей-Люссака, Шарля.
18.	Решение задач по теме	Анализ и решение задач
10.	«Влажность воздуха».	на применение формулы $\varphi = p/p_0 100\%$.
19.	Решение задач по теме	Анализ задач на уравнение теплового баланса.
	«Внутренняя энергия».	
20.	Решение задач по теме	Анализ задач на уравнение теплового баланса.
	«Работа в термодинамике».	
21.	Решение задач по теме	Анализ задач на уравнение теплового баланса
	«Количество теплоты».	
22.	Решение задач по теме	Анализ качественных, графических, расчётных задач на
	«Применение 1 закона	применение первого закона термодинамики к различным
	термодинамики к изопроцессам».	изопроцессам, а также формул работы в термодинамике и количества теплоты.
23.	Решение задач по теме	Решение основных типов задач на первый закон
23.	«КПД тепловых	термодинамики, расчёт количеств теплоты и работы, КПД
	двигателей».	тепловых двигателей.
24.	Решение задач по теме	Алгоритм решения задач по электростатике. Запись условия
	«Закон Кулона».	равновесия электрических зарядов в различных ситуациях.
25.	ř	
25.	Решение задач по теме	Использование при решении задач формул напряжённости
23.	«Напряжённость	
	«Напряжённость электрического поля».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей.
26.	«Напряжённость электрического поля». Решение задач по теме	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического
	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов.	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов,
	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией.
	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией.
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов.
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость.	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка цепи для электрических цепей с последовательным,
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор». Решение задач по теме «Законы постоянного	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка цепи для электрических цепей с последовательным, параллельным и смешанным соединением
26.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор». Решение задач по теме «Законы постоянного тока».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка цепи для электрических цепей с последовательным, параллельным и смешанным соединением проводников.
26. 27. 28.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор». Решение задач по теме «Законы постоянного	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка цепи для электрических цепей с последовательным, параллельным и смешанным соединением проводников. Задачи на применение закона Ома для полной
26. 27. 28.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор». Решение задач по теме «Законы постоянного тока».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка цепи для электрических цепей с последовательным, параллельным и смешанным соединением проводников.
26. 27. 28.	«Напряжённость электрического поля». Решение задач по теме «Разность потенциалов. Энергия электрического поля». Решение задач по теме «Электрическая ёмкость. Конденсатор». Решение задач по теме «Законы постоянного тока».	Использование при решении задач формул напряжённости поля и на принцип суперпозиции полей. Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией. Решение задач на описание систем конденсаторов. Задачи на применение закона Ома для участка цепи для электрических цепей с последовательным, параллельным и смешанным соединением проводников. Задачи на применение закона Ома для полной

	тока».	Джоуля-Ленца.
31- 34	Резервное время.	